Crystal Structure of abcde-Pentacarbonyl-f- μ-fluoro-ghijk-pentafluororhenium(1)rhenium (v)

By Donald M. Bruce, John H. Holloway,* and David R. Russell,* Chemistry Department, The University, Leicester LE1 7RH

Abstract

Crystals of the title compound are orange, orthorhombic, and have space group Pbca, $a=22.34(3), b=15.51$ (1). and $c=13.67(1) \AA$. The structure has been refined by least-squares methods to $R 0.061$ for 1969 reflections measured by diffractometer. The atomic arrangement is consistent with a covalent fluorine-bridged formulation comprising two almost identical $\left[\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}\right] \cdot \operatorname{ReF}_{5}$ molecules in the asymmetric unit. Both rhenium atoms have approximately octahedral co-ordination and are linked by a bent fluorine bridge.

The title compound has been prepared by the reaction of $\left[\mathrm{Re}_{2}(\mathrm{CO})_{10}\right]$ with ReF_{6} in anhydrous $\mathrm{HF},{ }^{1}$ and by room-temperature fluorination of $\left[\mathrm{Re}_{2}(\mathrm{CO})_{10}\right]$ with xenon difluoride in Genetron 113 (1,1,2-trichloro-1,2,2trifluoroethane) or anhydrous hydrogen fluoride solvents. ${ }^{2}$ In an earlier investigation of the former reaction ${ }^{1}$ in which ReF_{6} was condensed stepwise on to $\left[\mathrm{Re}_{2}(\mathrm{CO})_{10}\right]$ in anhydrous hydrogen fluoride, \dagger a green solution was produced which gave approximately equal amounts of two solids which separated as orange prisms and green platelets. A preliminary report of the crystal structures of these two solids has been published; ${ }^{1}$ we now describe the structure of $\left[\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}\right] \cdot \operatorname{ReF}_{5}$ in greater detail. A subsequent paper ${ }^{3}$ will describe the structure of $\alpha-\left[\operatorname{Re}(\mathrm{CO})_{6}\right]\left[\mathrm{Re}_{2} \mathrm{~F}_{11}\right]$ and the results of a detailed study of the $\left[\mathrm{Re}_{\mathbf{2}}(\mathrm{CO})_{\mathbf{1 0}}\right]-\left[\mathrm{ReF}_{\mathbf{6}}\right]-\mathrm{HF}$ system.

EXPERIMENTAL

Mixtures of orange and green crystals from the $\left[\mathrm{Re}_{2}{ }^{-}\right.$ $\left.(\mathrm{CO})_{10}\right]-\mathrm{ReF}_{6}$ reaction in anhydrous hydrogen fluoride were pumped dry after decanting the bulk of the green HF solution. The crystals were transferred to a Pyrex multicapillary apparatus, previously dried and seasoned with ClF_{3}, in a recirculating nitrogen-filled dry-box (Lintott Engineering Ltd., Horsham, Essex). The apparatus was evacuated and individual crystals of the orange compound were sealed into short lengths of capillary for the crystallographic examination. No noticeable decomposition or attack on the Pyrex occurred during the data collection.
Crystal Data- $\mathrm{C}_{5} \mathrm{~F}_{6} \mathrm{O}_{5} \mathrm{Re}_{2}, \quad M=624.4$, Orthorhombic, $a=22.34(3), b=15.51(1), c=13.67(1) \AA, U=4737 \AA^{3}$, $Z=16, D_{\mathrm{c}}=3.51 \mathrm{~g} \mathrm{~cm}^{-3}, \quad F(000)=4384, \lambda\left(\right.$ Mo- $\left.K_{\alpha}\right)=$ $0.7107 \AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=216.8 \mathrm{~cm}^{-1}$. Space group Pbca from systematic absences.
D_{m} was not measured, but the cell volume is consistent with $Z=16$ if the structure is assumed to be a close-packed lattice of carbon, oxygen, and fluorine atoms having atomic values of 21,19 , and $17 \AA^{3}$ respectively ${ }^{2}$ (calculated on the basis of covalent radii). ${ }^{4}$ This method correctly reproduces the cell volumes for the related compounds $\left[\left\{\mathrm{Ru}(\mathrm{CO})_{3^{-}}\right.\right.$ $\left.\left.\mathrm{F}_{2}\right\}_{4}\right]^{5}$ and $\left[\mathrm{Re}_{2}(\mathrm{CO})_{10}\right] .^{6}$ Accurate unit-cell dimensions
\dagger In ref. 1 the ratio $\left[\operatorname{ReF}_{6}\right]:\left[\operatorname{Re}_{2}(\mathrm{CO})_{10}\right]$ was stated as $1.08: 0.75$. This is in error, the 0.75 referring to the $\operatorname{Re}(\mathrm{CO})_{5}$ molecular unit.
\ddagger For details see Notices to Authors No. 7, J.C.S. Dalton, 1977, Index issue.
${ }^{1}$ D. M. Bruce, J. H. Holloway, and D. R. Russell, J.C.S. Chem. Comm., 1973, 321.
${ }^{2}$ D. M. Bruce, A. J. Hewitt, J. H. Holloway, R. D. Peacock, and I. L. Wilson, J.C.S. Dalton, 1976, 2230.
${ }_{3}$ D. M. Bruce, J. H. Holloway, and D. R. Russell, J.C.S. Dalton, in preparation.
were obtained from zero-layer precession photographs recorded by $\mathrm{Mo}-K_{\alpha}$ radiation.

Intensities of reflections with $(\sin \theta) / \lambda<0.7 \AA^{-1}$ were collected about the c axis (layers $h k 0-12$) at $23^{\circ} \mathrm{C}$ on a Stoe-Güttinger-Weissenberg diffractometer with monochromatic Mo- K_{α} radiation and an ω-scan technique. The crystal was a pentagonal plate on $\{100\}$ having thickness 0.0145 cm , and other dimensions $c a .0 .08 \times 0.06 \mathrm{~cm}$. The 1981 reflections having $I \geqslant 3 \sigma(I)$ were corrected for Lorentz, polarisation, and absorption effects. ${ }^{7}$ Scattering factors for neutral atoms were taken from ref. 8, and the structure was solved by conventional Patterson and difference-Fourier techniques. Block-diagonal leastsquares refinement (each block contained the parameters of one atom) of positional and isotropic thermal parameters for all the atoms, and individual layer scale factors, reduced R to 0.075 . Further cycles of refinement using anisotropic thermal parameters for rhenium atoms, a single overall scale factor, and including corrections for anomalous scattering by rhenium ${ }^{9}$ gave a final R of 0.061 . In the final cycles 12 reflections with large discrepancies between $\left|F_{0}\right|$ and $\left|F_{\mathrm{c}}\right|$ were excluded. The function minimised was $\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$, with $w=\left(10+\left|F_{\mathrm{o}}\right|\right)^{-1}$ in the final cycles. A final difference-Fourier revealed no significant features and an analysis of the weighting scheme over F_{o} and $(\sin \theta) / \lambda$ was satisfactory.
The computer programs used were written locally except for ORTEP and ABSCOR. ${ }^{7}$ Observed and calculated structure factors have been deposited as Supplementary Publication No. SUP 22150 (5 pp .). \ddagger Final positional and thermal parameters, with their estimated standard deviations, are listed in Table 1. Interatomic distances and angles are given in Table 2.

DISCUSSION

Each formula unit consists of slightly distorted $\left[\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}\right]$ and ReF_{6} octahedra, sharing one vertex, forming a bent $\mathrm{Re}-\mathrm{F}-\mathrm{Re}$ linkage. The two crystallographically non-equivalent molecules both approximate closely to C_{s} symmetry and differ only in the orientation of the $\mathrm{Re}(\mathrm{CO})_{4}$ and ReF_{4} equatorial planes, relative to the $\operatorname{Re}-\mathrm{F}-\operatorname{Re}$ plane (Figure 1). The $\operatorname{Re}(1)-\operatorname{Re}(2)$ molecule

[^0](A) has the ReF_{4} unit eclipsed with respect to the Re^{-} F -Re bridge, and the $\operatorname{Re}(\mathrm{CO})_{4}$ unit staggered. The opposite holds for the $\operatorname{Re}(3)-\operatorname{Re}(4)$ molecule (B).

Table 1
Final positional and thermal parameters, with estimated standard deviations in parentheses

Atom	x / a	y / b	z / c	B / \AA^{2}
$\mathrm{Re}(1)$	$0.00508(5)$	$0.25151(7)$	$0.04928(13)$	
$\mathrm{Re}(2)$	0.020 47(7)	0.040 76(8)	$0.20123(14)$	see
$\mathrm{Re}(3)$	$0.25882(6)$	0.069 40(8)	$0.28522(14)$	below
$\mathrm{Re}(4)$	$0.26004(7)$	0.274 30(8)	0.449 96(14)	
C(11)	0.075(2)	$0.318(3)$	0.097(4)	$4.8(9)$
C(12)	0.050(1)	0.226(2)	-0.075(3)	2.8 (6)
C(13)	--0.065(2)	0.186(2)	-0.003(3)	3.0 (6)
C(14)	-0.033(2)	$0.272(3)$	0.179(4)	4.7 (9)
$\mathrm{C}(15)$	-0.025(2)	$0.357(2)$	$-0.004(3)$	3.4(7)
$\mathrm{O}(11)$	$0.112(1)$	$0.364(2)$	$0.124(2)$	7.0(7)
$\mathrm{O}(12)$	0.069(1)	$0.209(2)$	-0.150(3)	4.7 (6)
$\mathrm{O}(13)$	-0.106(1)	$0.148(2)$	-0.032(3)	5.8(7)
$\mathrm{O}(14)$	-0.063(1)	$0.286(2)$	0.241 (3)	6.2(8)
$\mathrm{O}(15)$	-0.044(1)	$0.423(1)$	$-0.029(2)$	$3.2(5)$
$\mathrm{F}(2 \mathrm{l})$	0.042(1)	$0.131(1)$	$0.109(2)$	4.4(5)
$\mathrm{F}(22)$	0.099(1)	0.006(1)	$0.205(2)$	6.3(6)
F (23)	-0.009(1)	-0.039(2)	0.293(2)	6.0(6)
F (24)	-0.056(1)	0.083(1)	0.193(2)	$5.0(5)$
F (25)	0.036(1)	$0.120(2)$	$0.299(2)$	6.1(6)
F(26)	0.004(1)	$-0.034(1)$	0.104(2)	$5.6(6)$
C(31)	$0.200(1)$	$0.149(2)$	0.225(3)	$2.2(5)$
C(32)	$0.321(2)$	0.123(4)	$0.211(4)$	6.1(1.1)
$\mathrm{C}(33)$	0.320 (2)	-0.007(3)	$0.354(4)$	$5.4(1.0)$
$\mathrm{C}(34)$	$0.194(2)$	$0.023(3)$	$0.375(4)$	5.7 (1.1)
$\mathrm{C}(35)$	0.244(2)	-0.008(3)	$0.185(4)$	4.9 (9)
$\mathrm{O}(31)$	$0.164(1)$	$0.191(2)$	$0.195(3)$	6.3(8)
$\mathrm{O}(32)$	$0.358(2)$	$0.145(2)$	$0.156(3)$	7.3 (9)
$\mathrm{O}(33)$	$0.354(1)$	-0.052(2)	0.373(3)	5.6(7)
O(34)	$0.155(2)$	$0.005(3)$	0.427(4)	10.0(1.3)
$\mathrm{O}(35)$	$0.231(2)$	--0.059(3)	$0.119(4)$	9.1 (1.1)
$\mathrm{F}(41)$	0.282(1)	0.160(1)	$0.397(2)$	5.7 (6)
$\mathrm{F}(42)$	$0.339(1)$	0.306(2)	0.444 (2)	6.1(6)
$\mathrm{F}(43)$	0.239(1)	$0.385(2)$	$0.507(2)$	$5.8(6)$
F (44)	$0.182(1)$	$0.238(2)$	0.456(2)	5.8(6)
F (45)	$0.246(1)$	$0.311(2)$	$0.328(2)$	6.8(7)
F(46)	0.272(1)	$0.235(2)$	$0.574(2)$	$5.5(6)$

Anisotropic rhenium-atom temperature factors $\left(\AA^{2}\right)$ in the form :

$\exp \left[-\frac{1}{4}\left(h^{2} a^{* 2} B_{11}+k^{2} b^{* 2} B_{22}+l^{2} c^{* 2} B_{33}+2 h k a^{*} b^{*} B_{12}+\right.\right.$						
	$\left.\left.2 h l a^{*} c^{*} B_{13}+2 k l b^{*} c^{*} B_{23}\right)\right]$					
Atom	B_{11}	B_{22}	B_{33}	B_{23}	B_{13}	B_{12}
$\operatorname{Re}(1)$	$2.69(5)$	$2.05(4)$	$2.06(7)$	$0.03(5)$	$0.31(7)$	$0.08(4)$
$\operatorname{Re}(2)$	$4.26(7)$	$2.03(5)$	$2.68(9)$	$-0.04(5)$	$0.39(8)$	$-0.36(4)$
$\operatorname{Re}(3)$	$3.12(5)$	$2.23(5)$	$3.67(10)$	$0.02(6)$	$0.01(8)$	$0.14(4)$
$\operatorname{Re}(4)$	$3.83(6)$	$2.74(5)$	$2.90(10)$	$0.12(6)$	$-0.22(8)$	$0.50(5)$

Figure 1 A view of the two crystallographically distinct $\left[\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}\right] \cdot \operatorname{ReF}_{5}$ molecules showing the atom labelling

Table 2
Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ with estimated standard deviations in parentheses

(a) Distances

$\operatorname{Re}(1)-\mathrm{C}(11)$	1.98(4)	$\mathrm{Re}(3)-\mathrm{C}(31)$	1.98(3)
$\mathrm{Re}(1)-\mathrm{C}(12)$	2.01(4)	$\mathrm{Re}(3)-\mathrm{C}(32)$	1.91(5)
$\operatorname{Re}(1)-\mathrm{C}(13)$	2.00(4)	$\mathrm{Re}(3)-\mathrm{C}(33)$	2.03(5)
$\mathrm{Re}(1)-\mathrm{C}(14)$	1.99(5)	$\mathrm{Re}(3)-\mathrm{C}(34)$	2.04 (5)
$\mathrm{Re}(1)-\mathrm{C}(15)$	1.91(4)	$\operatorname{Re}(3)-\mathrm{C}(35)$	$1.86(5)$
$\mathrm{C}(11)-\mathrm{O}(11)$	1.16 (5)	$\mathrm{C}(31)-\mathrm{O}(31)$	1.10(5)
$\mathrm{C}(12)-\mathrm{O}(12)$	$1.14(5)$	$\mathrm{C}(32)-\mathrm{O}(32)$	1.18(7)
$\mathrm{C}(13)-\mathrm{O}(13)$	$1.16(5)$	$\mathrm{C}(33)-\mathrm{O}(33)$	1.07 (6)
$\mathrm{C}(14)-\mathrm{O}(14)$	1.11 (6)	$\mathrm{C}(34)-\mathrm{O}(34)$	1.15 (7)
$\mathrm{C}(15)-\mathrm{O}(15)$	1.16(4)	$\mathrm{C}(35)-\mathrm{O}(35)$	1.23(7)
$\mathrm{Re}(1)-\mathrm{F}(21)$	$2.20(2)$	$\mathrm{Re}(3)-\mathrm{F}(41)$	2.13 (3)
$\mathrm{Re}(2)-\mathrm{F}(21)$	1.95(2)	$\mathrm{Re}(4)-\mathrm{F}(41)$	1.98(2)
$\mathrm{Re}(2)-\mathrm{F}(22)$	1.84 (3)	$\mathrm{Re}(4)-\mathrm{F}(42)$	1.83(3)
$\mathrm{Re}(2)-\mathrm{F}(23)$	1.88(3)	$\mathrm{Re}(4)-\mathrm{F}(43)$	1.94 (3)
$\mathrm{Re}(2)-\mathrm{F}(24)$	1.84(2)	$\mathrm{Re}(4)-\mathrm{F}(44)$	1.83 (3)
$\mathrm{Re}(2)-\mathrm{F}(25)$	$1.85(3)$	$\mathrm{Re}(4)-\mathrm{F}(45)$	1.78(3)
$\mathrm{Re}(2)-\mathrm{F}(26)$	1.80(3)	$\mathrm{Re}(4)-\mathrm{F}(46)$	1.83(3)
(b) Angles			
$\mathrm{F}(21)-\mathrm{Re}(1)-\mathrm{C}(11)$	91.4(1.4)	$\mathrm{F}(41)-\mathrm{Re}(3)-\mathrm{C}(31)$	92.8(1.2)
$\mathrm{F}(21)-\mathrm{Re}(1)-\mathrm{C}(12)$	87.3(1.1)	$\mathrm{F}(41)-\mathrm{Re}(3)-\mathrm{C}(32)$	84.9(1.8)
$\mathrm{F}(21)-\mathrm{Re}(1)-\mathrm{C}(13)$	89.7(1.2)	$\mathrm{F}(41)-\mathrm{Re}(3)-\mathrm{C}(33)$	83.5(1.6)
$F(21)-\operatorname{Re}(1)-\mathrm{C}(14)$	88.3 (1.4)	$\mathrm{F}(41)-\mathrm{Re}(3)-\mathrm{C}(34)$	88.7(1.7)
$F(21)-\mathrm{Re}(1)-\mathrm{C}(15)$	178.5(1.3)	$\mathrm{F}(41)-\mathrm{Re}(3)-\mathrm{C}(35)$	176.2(1.6)
$\mathrm{C}(11)-\mathrm{Re}(1)-\mathrm{C}(12)$	89.4(1.7)	$\mathrm{C}(31)-\operatorname{Re}(3)-\mathrm{C}(32)$	89.3(1.8)
$\mathrm{C}(11)-\mathrm{Re}(1)-\mathrm{C}(13)$	178.3(1.9)	$\mathrm{C}(31)-\mathrm{Re}(3)-\mathrm{C}(33)$	176.2(1.8)
$\mathrm{C}(11)-\mathrm{Re}(1)-\mathrm{C}(14)$	87.5(1.9)	$\mathrm{C}(31)-\mathrm{Re}(3)-\mathrm{C}(34)$	90.0(1.7)
$\mathrm{C}(11)-\operatorname{Re}(1)-\mathrm{C}(15)$	87.7(1.7)	$\mathrm{C}(31)-\mathrm{Re}(3)-\mathrm{C}(35)$	88.8(1.7)
$\mathrm{C}(12)-\mathrm{Re}(1)-\mathrm{C}(13)$	89.4(1.5)	$\mathrm{C}(32)-\mathrm{Re}(3)-\mathrm{C}(33)$	91.0(2.1)
$\mathrm{C}(12)-\mathrm{Re}(1)-\mathrm{C}(14)$	174.6(1.6)	$\mathrm{C}(32)-\mathrm{Re}(3)-\mathrm{C}(34)$	173.5(2.2)
$\mathrm{C}(12)-\mathrm{Re}(1)-\mathrm{C}(15)$	91.4(1.6)	$\mathrm{C}(32)-\mathrm{Re}(3)-\mathrm{C}(35)$	91.6(2.2)
$\mathrm{C}(13)-\mathrm{Re}(1)-\mathrm{C}(14)$	93.7(1.7)	$\mathrm{C}(33)-\mathrm{Re}(3)-\mathrm{C}(34)$	89.3 (2.0)
$\mathrm{C}(13)-\mathrm{Re}(1)-\mathrm{C}(15)$	91.1(1.5)	$\mathrm{C}(33)-\mathrm{Re}(3)-\mathrm{C}(35)$	$95.0(2.0)$
$\mathrm{C}(14)-\mathrm{Re}(1)-\mathrm{C}(15)$	93.0(1.8)	$\mathrm{C}(34)-\mathrm{Re}(3)-\mathrm{C}(35)$	94.8(2.1)
$\mathrm{Re}(1)-\mathrm{C}(11)-\mathrm{O}(11)$	173.9(3.7)	$\mathrm{Re}(3)-\mathrm{C}(31)-\mathrm{O}(31)$	175.2(3.1)
$\mathrm{Re}(1)-\mathrm{C}(12)-\mathrm{O}(12)$	$171.5(3.0)$	$\mathrm{Re}(3)-\mathrm{C}(32)-\mathrm{O}(32)$	$169.1(4.5)$
$\mathrm{Re}(1)-\mathrm{C}(13)-\mathrm{O}(13)$	$179.2(3.8)$	$\mathrm{Re}(3)-\mathrm{C}(33)-\mathrm{O}(33)$	166.1(4.9)
$\mathrm{Re}(1)-\mathrm{C}(14)-\mathrm{O}(14)$	167.5(4.1)	$\mathrm{Re}(3)-\mathrm{C}(34)-\mathrm{O}(34)$	172.8(4.2)
$\operatorname{Re}(1)-\mathrm{C}(15)-\mathrm{O}(15)$	174.7(3.7)	$\mathrm{Re}(3)-\mathrm{C}(35)-\mathrm{O}(35)$	177.5(4.0)
$\mathrm{Re}(1)-\mathrm{F}(21)-\operatorname{Re}(2)$	138.8(1.2)	$\operatorname{Re}(3)-\mathrm{F}(41)-\operatorname{Re}(4)$	142.0(1.4)
$\mathrm{F}(21)-\mathrm{Re}(2)-\mathrm{F}(22)$	89.0(1.1)	$\mathrm{F}(41)-\operatorname{Re}(4)-\mathrm{F}(42)$	88.8(1.1)
$\mathrm{F}(21)-\mathrm{Re}(2)-\mathrm{F}(23)$	173.5(1.0)	$\mathrm{F}(41)-\mathrm{Re}(4)-\mathrm{F}(43)$	177.5(1.2)
$\mathrm{F}(21)-\mathrm{Re}(2)-\mathrm{F}(24)$	86.6(1.0)	$\mathrm{F}(41)-\mathrm{Re}(4)-\mathrm{F}(44)$	88.9(1.1)
$\mathrm{F}(21)-\mathrm{Re}(2)-\mathrm{F}(25)$	87.0 (1.1)	$\mathrm{F}(41)-\mathrm{Re}(4)-\mathrm{F}(45)$	88.9(1.3)
$\mathrm{F}(21)-\mathrm{Re}(2)-\mathrm{F}(26)$	91.8(1.1)	$\mathrm{F}(41)-\mathrm{Re}(4)-\mathrm{F}(46)$	90.4(1.1)
$\mathrm{F}(22)-\mathrm{Re}(2)-\mathrm{F}(23)$	97.3(1.2)	$\mathrm{F}(42)-\mathrm{Re}(4)-\mathrm{F}(43)$	90.7(1.1)
$\mathrm{F}(22)-\mathrm{Re}(2)-\mathrm{F}(24)$	175.3(1.1)	$F(42)-\operatorname{Re}(4)-\mathrm{F}(44)$	177.5(1.1)
$\mathrm{F}(22)-\mathrm{Re}(2)-\mathrm{F}(25)$	89.4(1.2)	$\mathrm{F}(42)-\mathrm{Re}(4)-\mathrm{F}(45)$	92.2(1.3)
$\mathrm{F}(22)-\mathrm{Re}(2)-\mathrm{F}(26)$	91.6 (1.2)	$\mathrm{F}(42)-\mathrm{Re}(4)-\mathrm{F}(46)$	89.1(1.2)
$\mathrm{F}(23)-\mathrm{Re}(2)-\mathrm{F}(24)$	87.1(1.1)	$\mathrm{F}(43)-\mathrm{Re}(4)-\mathrm{F}(44)$	$91.6(1.1)$
$\mathrm{F}(23)-\mathrm{Re}(2)-\mathrm{F}(25)$	$91.2(1.2)$	$\mathrm{F}(43)-\mathrm{Re}(4)-\mathrm{F}(45)$	$93.5(1.3)$
$\mathrm{F}(23)-\mathrm{Re}(2)-\mathrm{F}(26)$	90.0 (1.2)	$F(43)-\mathrm{Re}(4)-\mathrm{F}(46)$	87.2(1.1)
$\mathrm{F}(24)-\mathrm{Re}(2)-\mathrm{F}(25)$	89.0(1.2)	$\mathrm{F}(44)-\mathrm{Re}(4)-\mathrm{F}(45)$	88.9(1.3)
$\mathrm{F}(\mathbf{2 4)}$ - $\mathrm{Re}(2)-\mathrm{F}(\mathbf{2 6})$	90.0 (1.2)	$\mathrm{F}(44)-\mathrm{Re}(4)-\mathrm{F}(46)$	89.8(1.2)
$\mathrm{F}(25)-\mathrm{Re}(2)-\mathrm{F}(26)$	178.4(1.2)	$\mathrm{F}(45)-\operatorname{Re}(4)-\mathrm{F}(46)$	178.6(1.2)

(c) Selected non-bonded contacts

$\operatorname{Re}(1) \cdots \operatorname{Re}(2)$	3.89	$\operatorname{Re}(2) \cdots \operatorname{Re}(3)$	5.46
$\operatorname{Re}(1) \cdots \operatorname{Re}(4)$	7.91	$\operatorname{Re}(3) \cdots \operatorname{Re}(4)$	3.89
$\operatorname{Re}(1) \cdots \mathrm{F}(25)$	4.04	$\operatorname{Re}(3) \cdots \mathrm{F}(46)$	4.72
$\operatorname{Re}(1) \cdots \mathrm{F}(44)$	6.84	$\operatorname{Re}(3) \cdots \mathrm{F}(22)$	3.85
$\operatorname{Re}(1) \cdots \mathrm{F}(41)$	7.94	$\operatorname{Re}(3) \cdots \mathrm{F}(21)$	5.49
$\operatorname{Re}(2) \cdots \mathrm{F}(41)$	6.69	$\operatorname{Re}(4) \cdots \mathrm{F}(21)$	7.10
$\operatorname{Re}(2) \cdots \mathrm{C}(31)$	4.36	$\operatorname{Re}(4) \cdots \mathrm{C}(11)$	6.39
$\operatorname{Re}(2) \cdots \mathrm{O}(31)$	3.97	$\operatorname{Re}(4) \cdots \mathrm{O}(11)$	5.72
$\mathrm{~F}(22) \cdots \mathrm{C}(31)$	3.17	$\mathrm{~F}(44) \cdots \mathrm{C}(11)$	5.61
$\mathrm{~F}(22) \cdots \mathrm{O}(31)$	3.21	$\mathrm{~F}(44) \cdots \mathrm{O}(11)$	5.18
$\mathrm{~F}(22) \cdots \mathrm{C}(34)$	3.15		
$\mathrm{~F}(22) \cdots(34)$	3.27		
$\mathrm{~F}(21) \cdots \mathrm{O}(31)$	3.11 (the closest non-bonding approach)		

Figure 2 shows how the two molecules are orientated relative to one another in the crystal. A molecule has as nearest neighbours four A molecules and ' one and two halves ' B molecules and vice versa for each B molecule.

There are thus two distinct types of interaction between molecules A and B (Figure 3). In one, the $\operatorname{Re}(\mathrm{CO})_{5}$ half of a B molecule is near to the ReF_{5} half of its asymmetric A molecule relative, lying slightly below it in $c[\operatorname{Re}(3) \cdots$

Figure 2 A stereoscopic view of the unit-cell contents approximately along the c direction

Figure 3 A view of part of the unit-cell contents showing the spatial relation between the two different molecules
$\mathrm{F}(22)-\operatorname{Re}(2) 3.85 \AA]$. The ReF_{5} half of B is near to the $\operatorname{Re}(\mathrm{CO})_{5}$ half of a different molecule $\mathrm{A}^{\prime \prime}$, lying slightly above it in $c[\operatorname{Re}(4)-\mathrm{F}(44) \cdots \operatorname{Re}(1) 4.16 \AA]$. The other interaction involves a 'broadside-on' orientation between complete molecules of B and A^{\prime}, thus forming a pseudo-dimeric, eight-membered, ring arrangement, which bears some resemblance to the eight-membered ring in $\left.\left[\left\{\mathrm{Ru}(\mathrm{CO})_{3} \mathrm{~F}_{2}\right\}_{4}\right]\right]^{5}$ The size of the two intermolecular $\operatorname{Re} \cdots F$ contacts $[\operatorname{Re}(3) \cdots F(24)$ 4.14, $\operatorname{Re}(1) \cdots \mathrm{F}(42) 3.80 \AA]$, however, shows that there is no significant bonding between the $\left[\mathrm{Re}(\mathrm{CO})_{5}\right] \cdot \mathrm{ReF}_{5}$ molecules. Similar loose oligomeric units are found in $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AsF}_{6}\right]$ (dimers) ${ }^{10}$ and $\left[\mathrm{SeF}_{3}\right]\left[\mathrm{NbF}_{6}\right]$ (tetramers in a cuboid arrangement). ${ }^{11}$

The detailed geometry within the $\left[\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}\right] \cdot \mathrm{ReF}_{5}$ molecules is of particular interest with respect to the continuing discussion of the nature of fluorine-bridged interactions. ${ }^{12}$ The average bond lengths of the two asymmetric molecules are given in Figure 4, where they are divided into statistically equivalent sets. The

[^1]standard deviations of these sets in each case are no greater than the estimated standard deviations of their individual members. Values for mean $\mathrm{Re}^{\mathrm{V}}-\mathrm{F}$ bond distances [1.84(2) (terminal) and 2.01(1) \AA (bridging)] may be taken from the $\left[\operatorname{Re}_{2} \mathrm{~F}_{11}\right]^{-}$anion of $\left[\operatorname{Re}(\mathrm{CO})_{6}\right]-$ $\left[\operatorname{Re}_{2} \mathrm{~F}_{11}\right]^{1,3}$ a discrete centrosymmetric anion with no close interatomic contacts. Thus the equatorial $\mathrm{Re}^{\mathrm{V}}-\mathrm{F}$ bond lengths of $\left[\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}\right] \cdot \operatorname{ReF}_{5}$, b, can be regarded as typical.

The bridging $\mathrm{Re}^{\mathrm{V}}-\mathrm{F}$ distance, c, is scarcely less than $\operatorname{Re}-\mathrm{F}$ (bridging) in $\left[\operatorname{Re}_{2} \mathrm{~F}_{11}\right]^{-}$, which is surprising as it

Figure 4 Average molecular geometry of $\left[\operatorname{Re}(\mathrm{CO}){ }_{5} \mathrm{~F}\right] \cdot \operatorname{ReF}_{5}$. Average bond lengths (\AA) with estimated standard deviations, taken from the two non-equivalent molecules: $a=1.91(3)$, $b=1.83(3), c=1.97(2), d=2.17(4), e=1.89(3), f=1.19(4)$, $g=1.99(4)$, and $h=1.13(3)$. The estimated standard deviations of the individual bonds are: $\operatorname{Re}-\mathrm{F} 0.03, \mathrm{Re}-\mathrm{C} 0.05$, and $\mathrm{C}-\mathrm{O} 0.07 \AA$. The average $\mathrm{Re}-\mathrm{F}-\mathrm{Re}$ angle is $141(1)^{\circ}$
suggests that $\left[\operatorname{Re}(\mathrm{CO})_{5}\right]^{+}$competes equally with ReF_{5} for the bridging fluoride ion. There are no directly comparable data for the $\mathrm{Re}^{\mathrm{T}-\mathrm{F}}$ (bridging) bond, but an estimate of $2.16 \AA$ for a terminal $\mathrm{Re}^{\mathrm{I}-\mathrm{F}}$ bond length can be obtained from the covalent radius of fluorine ${ }^{4}$ ($0.64 \AA$) and the estimated covalent radius ($1.52 \AA$) of $\mathrm{Re}^{\mathrm{I}}{ }^{13}$ This $\mathrm{Re}^{-\mathrm{F}}$ estimate is close to the distance d involving a bridging fluorine atom, but comparisons with metal-halogen distances in other carbonyl halides and their derivatives, ${ }^{14}$ including the only comparable carbonyl fluoride, $\left[\left\{\mathrm{Ru}(\mathrm{CO})_{3} \mathrm{~F}_{2}\right\}_{4}\right]$, ${ }^{5}$ show that there is often little or no difference between terminal and bridging distances where metals are in low oxidation states. The rhenium-fluorine bridge bond lengths, therefore, suggest that $\left[\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}\right] \cdot \operatorname{ReF}_{5}$ is essentially a covalent fluorine-bridged adduct, with only minimal
${ }_{13}$ N. I. Gapotchenko, Y. T. Struchov, N. V. Alekseev, and I. A. Ronova, J. Struct. Chem., 1973, 14, 383 ; V. G. Andrianov, B. P. Biryukov, and Y. T. Struchkov, ibid., 1969, 10, 1014.
${ }_{14}$ S. Merlino and G. Montagnoli, Acta Cryst., 1968, B24, 424; D. Bright and O. S. Mills, J.C.S. Chem. Comm., 1974, 219 ; L. F. Dahl and Chin-Hsuan Wei, Acta Cryst., 1963, 16, 611; L. B. Handy, J. K. Ruff, and L. F. Dahl, J. Amer. Chem. Soc., 1970, 7312; H. P. Calhoun and J. Trotter, J.C.S. Chem. Comm., 1974, 377.
${ }^{15}$ J. Burgess, C. J. W. Fraser, V. M. McRae, R. D. Peacock, and D. R. Russell, J. Inorg. Nuclear Chem. Suppl., 1976, 183.
${ }^{16}$ R. B. King, J. Inorg. Nuclear Chem., 1967, 29, 2119.
17 Trinh-Toan, Diss. Abs. Internat., 1972, B32, 6938; F. W. B. Einstein and A. C. MacGregor, J.C.S. Chem. Comm., 1974, 778.
${ }^{18}$ F. O. Sladky and N. Bartlett, J. Chem. Soc. (A), 1969, 2188.
${ }^{19}$ A. P. Gaughan, Z. Dori, and J. A. Ibers, Inorg. Chem., 1974, 13, 1657.
contribution of ionic forms such as $\left[\operatorname{Re}(\mathrm{CO})_{\mathbf{6}}\right]\left[\mathrm{ReF}_{6}\right]$. The latter structure would be unlikely in any event, since the $\left[\operatorname{Re}(\mathrm{CO})_{5}\right]^{+}$cation does not obey the inert-gas rule. The adduct therefore differs from many other fluorine-bridged molecules, such as $\mathrm{XeF}_{2} \cdot 2 \mathrm{SbF}_{5}$, ${ }^{15}$ where an alternative ionic formulation $[\mathrm{XeF}]\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right]$ must also contribute significantly to the bonding description to be consistent with the observed structural geometry. The best chemical interpretation of the molecular structure is therefore to represent it as $\left[\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}\right] \cdot$ ReF_{5}, i.e. an ReF_{5} adduct of $\left[\mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F}\right]$ where $[\mathrm{Re}$ $(\mathrm{CO})_{5} \mathrm{~F}$] acts as a partial fluoride-ion donor.

Related compounds include $2\left[\mathrm{Re}(\mathrm{CO})_{5} \mathrm{Cl}\right] \cdot \mathrm{SbCl}_{5},{ }^{16}$ whose structure is at present unknown; structures have been determined of two $\left[\mathrm{Fe}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2} \mathrm{Cl}\right] \cdot \mathrm{SbCl}_{3}$ compounds, ${ }^{17}$ but these involve only very weak interactions more akin to those of molecular adducts such as $\mathrm{XeF}_{2} \cdot \mathrm{IF}_{5}{ }^{18}$ On the other hand the compound $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{Cu}\left(\mathrm{FBF}_{3}\right)\right]$ seems to be an example of an adduct much closer to the ionic formulation $\left[\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{3}\right]\left[\mathrm{BF}_{4}\right]$. The $\mathrm{Cu}-\mathrm{F}$ distance ${ }^{19}$ (average value $231 \AA$) is much greater than the value ($184 \AA$) found in $\mathrm{CuF},{ }^{20}$ and may result from steric crowding between phenyl rings and the BF_{4} unit.
Within the $\left[\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}\right]$ unit there is a distinct probability that the $\mathrm{Re}-\mathrm{C}$ distance trans to fluorine is shorter than $\mathrm{Re}^{-\mathrm{C}}$ (equatorial). This shortening is frequently noticed in $\left[\operatorname{Re}(\mathrm{CO})_{5} \mathrm{X}\right]$ compounds ${ }^{21}$ although it is generally not significant. A greater range of examples of this trans shortening is available from $\left[\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{X}\right]$ compounds; ${ }^{22,23}$ it is believed that the shortening results from a greater back donation from the metal to carbonyl when the latter is trans to X, X generally being a poorer π acceptor than CO . In $\left[\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}\right] \cdot \mathrm{ReF}_{5}$, where the bridging fluorine atom is a particularly poor acceptor (possibly even π donating), the trans $\operatorname{Re}-\mathrm{C}$ shortening would be enhanced.
The determination of the structure of $\left[\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}\right] \cdot$ ReF_{5} gives credence to earlier postulated structures of related species. ${ }^{24}$

We thank the S.R.C. for support.
[7/697 Received, 26th April, 1977]
${ }^{20}$ R. W. G. Wyckhoff, 'Crystal Structures,' vol. 1, 2nd edn., Wiley, New York, 1963.
${ }^{21}$ I. S. Astakhova, V. A. Seminon, and Y. T. Struchkov, J. Struct. Chem., 1969, 10, 419; A. S. Foust, W. A. G. Graham, and R. P. Stewart, J. Organometallic Chem., 1973, 54, C22; M. R. Churchill and R. Bau, Inorg. Chem., 1967, 6, 2086.
${ }^{22}$ W. Clegg and P. J. Wheatley, J.C.S. Dalton, 1974, 511 and refs. therein.
${ }^{23}$ V. W. Day, B. R. Stults, K. J. Reimer, and A. Shaver, J. Amer. Chem. Soc., 1974, 96, 4008.
${ }^{24}$ C. J. Marshall and R. D. Peacock, 6th Internat. Symp. Fluorine Chem., Durham, 1971, Abstract C-33; D. M. Bruce, J. H. Holloway, C. J. Marshall, S. Misra, and R. D. Peacock, 4 th European Symp. Fluorine Chem., Ljubljana, 1972, Abstract 1-17; A. J. Hewitt, J. H. Holloway, R. D. Peacock, J. B. Raynor, and I. L. Wilson, J.C.S. Dalton, 1976, 579.

[^0]: ${ }^{4}$ L. Pauling, 'The Nature of the Chemical Bond,' 3rd edn., Cornell University Press, Ithaca, New York, 1960.
 ${ }^{5}$ C. J. Marshall, R. D. Peacock, D. R. Russell, and I. L. Wilson, Chem. Comm., 1970, 1643.
 ${ }_{6}^{6}$ L. F. Dahl, E. Ishishi, and R. E. Rundle, J. Chem. Phys., 1957, 26, 1750.
 ${ }^{7}$ J. De Meulenaer and H. Tompa, Acta Cryst., 1965, 19, 1014; N. W. Alcock, ibid., A25, 518.
 ${ }_{8}$ D. T. Cromer and J. T. Waber, Acta Cryst, 1965, 18, 104.
 ${ }^{9}$ D. T. Cromer, Acta Cryst., 1965, 18, 17.

[^1]: ${ }^{10}$ N. Bartlett, B. G. de Boer, F. J. Hollander, F. O. Sladky, D. H. Templeton, and Z. Zalkin, Inorg. Chem., 1974, 13, 780.
 ${ }_{11}$ A. J. Edwards and G. R. Jones, J. Chem. Soc. (A), 1970, 1891.

 12 J. H. Holloway and J. G. Knowles, J. Chem, Soc. (A), 1969, 756; F. O. Sladky, P. A. Bulliner, and N. Bartlett, ibid., p. 2179; R. J. Gillespie and B. Landa, Inorg. Chem., 1973, 12, 1383; B. Frlec and J. H. Holloway, J.C.S. Dalton, 1975, 535 ; J. H. Holloway, G. J. Schrobilgen, and P. Taylor, J.C.S. Chem. Comm., 1975, 40; P. A. Tucker, P. A. Taylor, J. H. Holloway, and D. R. Russell, Acta Cryst., 1975, B31, 906.

